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Abstract: This paper presents an H optimization-based approach for the detection and isolation of faults 

in a horizontal axis wind turbine. The primary residuals are generated from separate parity equations for 
each of the blade pitch and drivetrain subsystems. Then, a robust secondary residual filtering scheme is 
developed to remove undesirable cross coupling in fault-residual pairings while suppressing the effects of 
the strong nonlinearity of the aerodynamic rotor torque-speed relationships, the effects of unmodelled 
dynamics and noise. Solutions are obtained using H and -synthesis tools. Sensor, actuator and 

system/parameter faults are diagnosed using specified information about the nature of the faults as well as 
sensor redundancy. Results are included demonstrating the diagnosis of individual faults specified with the 
benchmark model for wind turbine fault detection and isolation. 
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1. INTRODUCTION 

Wind turbines are attracting increasing attention as viable 
alternatives for renewable energy generation. The wind 
resource itself is quite abundant, cheap and free of 
greenhouse gas emissions. However, wind turbines (WT) 
expensive to install, operate and maintain. To justify their 
very high installation and maintenance costs, the trend over 
the last couple of decades has been to build ever larger wind 
turbines with high outputs. Today turbines that generate 5-6 
MW or more are in development or are being installed. To 
avoid objections to the aesthetic and land use issues and noise 
emissions from onshore WT installations, more and more 
new developments target less accessible, offshore 
installations (Hau, 2006). This increases the cost per failure. 
To ensure reliability and reduce downtimes for these 
installations, carefully designed fault diagnosis and fault 
tolerant control systems play a very critical role. The timely 
detection, isolation and accommodation of faults coming 
from various sensors and actuators or from system/subsystem 
deterioration are crucial for the cost effective operation of the 
wind turbines and their subsequent commercial success in the 
energy market. 

A review of the few existing works on fault diagnosis and 
fault tolerant control of wind turbines has been given in 
Esbensen and Sloth (2009). An observer based scheme was 
described in Wei et al (2008) for estimating pitch sensor 
faults. Odgaard et al (2009a) describe an unknown input 
observer for the detection of sensor faults in the drivetrain of 
a three-blade horizontal axis wind turbine (HAWT). Donders 
(2002) proposed the use of a discrete time Kalman filter and 
an Interacting Multiple-Model estimator for the detection and 
estimation of unknown actuator gains in a HAWT.  

This paper deals with fault diagnosis (detection and isolation) 
of a HAWT using a model-based framework that 
encompasses both the blade pitch subsystems, the drivetrain 

subsystems, and the generator/converter subsystem. In the 
proposed approach, primary residuals are first generated from 
a parity equation approach and then passed onto a robust 
secondary residual generation or filtering scheme. The robust 
scheme attempts to remove undesirable cross-coupling 
between fault-residual pairs and accommodates the strong 
aerodynamic nonlinearities and modelling uncertainties. 
Solutions for the robust schemes are obtained using H and 

-synthesis tools from linear robust control theory.  

2. SYSTEM DESCRIPTION 

2.1 Overview of the System 

The three-blade horizontal axis wind turbine comprises of the 
components depicted in the schematic of Fig.1. This is the 
typical layout adopted for the Benchmark WT FDI Problem 
(Odgaard, et al. 2009b). Figure 1 also shows the torque-speed 
physical causality for the interconnection between the 
subsystems and the sensor measurements available for the 
controller. The set up includes two pitch angle sensors for 
each blade, two speed sensors for each of the rotor and the 
generator, and sensors for generator power and torque. The 
controller acts by providing a reference pitch angle for the 
pitch system and a reference torque for the converter which 
in turn regulates the generator torque. The workings of the 
system are described in further detail in Johnson et al (2006) 
and in Esbensen and Sloth (2009). In this work, the particular 
structure of the control system summarized in Odgaard et al 
(2009b) will be used without change. 

2.2 System Models 

Pitch and Blade Systems: Each of the blade pitch systems 
(with their blade pitching actuators) are modelled as 
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For the Benchmark problem, the following construction of 
the feedback signal based on the two pitch angle sensors (per 
blade) has been adopted: 
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where, 
i  is the actual pitch angle. It turns out that this 

construction introduces a cross coupling been pitch angle 
sensor faults as will be shown below. 
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Fig. 1. Overview of the wind turbine system (Sensor 
measurements are designated with the subscript m.). 

The aerodynamic rotor torque is modelled by: 
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where, 
r wR v  is the tip speed ratio and ( ( ), ( ))q iC t t   is 

the torque coefficient table (as given in, say, Johnson et 
al(2006)). This represents a major nonlinearity in the WT 
system and is one of the key considerations in the diagnostic 
approach discussed below. 
Drivetrain System: A two mass (rotor-generator) model of 
the drivetrain has the following state space description 
(Odgaard et al(2009b)) 
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where Bdt, Br and Bg are torsional damping/viscous friction 
coefficients of the drivetrain, rotor and generator, 
respectively; Ng is the gear ratio; Jr and Jg are the rotor and 
generator inertia; Kdt is the torsional stiffness of the drivetrain 
and  is the drivetrain efficiency. The model gives the 
evolution of the rotor speed(r) and generator speed (g). 
Generator and Converter: A first order dynamics is assumed 
for the convertor: 
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And the power of the generator is given by: 

( ) ( ) ( )g g g gP t t t       (6) 

3. DIAGNOSTIC SCHEME 

The proposed approach for fault diagnostics in the HAWT is 
based on the use of a parity equation method to create 

primary residuals. Then, the a diagnostic scheme design that 
is robust with respect to disturbances, unmodeled dynamics, 
and nonlinear aerodynamics, is obtained by generating 
secondary residuals via a robust H filtering method 

(detailed in Section 4). For both steps, it is sought to make 
the diagnostic scheme for the pitch subsystems to be 
independent of that for the drivetrain subsystem. 

3.1 Residual Generation for the Pitch Subsystems 

The diagnostic scheme for the three blade pitch subsystems is 
depicted in Fig. 2. This scheme allows detecting and isolating 
faults in the pitch sensors as well as dynamic faults in each of 
the pitch subsystems. The scheme is capable of isolating 
multiple faults that are not occurring within the same pitch 
subsystem. 

 
Fig 2. Diagnostic scheme for the three pitch subsystems. 

In the presence of (sensor or system) faults, the pitch system 
model in (1) can be used to generate an estimate of the pitch 
angles from the pitch reference input, which is assumed to be 
available. The two sensor measurement of the pitch angles 
are then: 
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where 1m , 2m are the sensor measurements of the pitch 

angles, 
1m ,

2m are sensor faults, and ,
n    represent 

the pitch system faults (due to hydraulic pressure drop or air 
content). Two residuals for each pitch system can then be 
defined as 

1 21 2
ˆ ˆ,m mr r        , where ˆ ( ) rT s  . 

Using (1), (2) and (8), after some manipulations, the explicit 
dependence of the residual on the faults can be expressed as: 
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This shows a cross-coupling in the sensor fault-residual 
pairing. Ideally, we would like to have the first residual 
affected only by 

1m  and the second residual affected only 

by 
2m . One objective of the robust residual generator (to 

be discussed in Section 4) is to obtain a good degree of 
decoupling for the purposes of fault isolation. Both residuals 
would of course be affected by the parametric/system faults. 
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After secondary filtering (with the robust filter), the residuals 
are sent to a residual evaluation unit where they are compared 
with fixed thresholds to generate an error signature and to 
detect and isolate the presence of faults. 

3.2 Residual Generation for the Drivetrain Subsystem 

The proposed diagnostic scheme for the drivetrain system is 

shown in Fig. 3. It assumes that wind velocity wv is available 

(from wind speed estimators, see for e.g., Ostergaard, et al, 
2007) and that the sensor measuring the generator torque 
(

,g m ) is fault free. The scheme generates two estimates of 

the rotor aerodynamic torque ,1r  and ,2r using sensor 

signals , 1r m  and , 2r m , respectively, and utilizing the error 

signature from the pitch subsystem diagnostics to select the 
pitch angle sensors that are not faulty. The estimated torque 
values are then used in a drivetrain model to generate rotor 

and generator speed estimates ( ,1ˆr , ,1ˆg ), ( ,2ˆr , ,2ˆg ). In 

presence of faults, from the model equations of the drivetrain 
subsystem (4), we can write: 
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where rgT is the transfer function matrix for the system in (4), 

g is the torque generator fault, ,r i , ,g i are the rotor 

and generator speed sensor faults, and   (drop in 

efficiency) is the system/parametric fault. The estimated rotor 
and generator speeds according to the scheme in Fig. 3 are 
given by: 
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where, the rotor torque estimate is used here for lack of its 
measurement. It is obtained from the relationship in (3) as: 

, , , ,ˆ ( )r i r i r i r r iF            (11) 

where  is a torque-speed gradient function from the local 
linearization of the function F, which is shorthand for the 
nonlinear aerodynamic rotor torque-speed relationship 
referred to in equation (3). By defining the four primary 
residuals as: 
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After some manipulations of (9) and (10), and using (11), the 
residual dynamics as function of the faults can be written as: 
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This structure of the primary residuals allows us to set the 
objective of the robust residual generator (to be detailed in 
Section 4) as one of suppressing the effects of all faults and 

disturbances except 1r  (rotor speed sensor faults). 

 
Fig. 3. Diagnostic scheme for drivetrain subsystem. 

 For detecting faults in the generator speed sensors, other 
information available from the power/torque sensors gives a 
more direct route (See (14) below). 
Again, post filtering, the residuals are sent to a residual 
evaluation unit where they are compared with fixed 
thresholds where they are assigned an error signature that will 
be used to detect and isolate the faults. 

3.3 Residual Generation for the Generator/Convertor 
Subsystem 

The residuals for the generator/convertor subsystem are 
obtained by using the measured generator torque and power. 
The residual for the detection and isolation of the torque 

sensor fault g is defined as , ˆ
g g m gr    , with 

,ˆ ( )g g g refT s  . For the detection and isolation of the 

faults in the generator speed sensors, the following residuals 
are constructed: 
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4. ROBUST RESIDUAL GENERATION 

The method for the generation of secondary residuals for the 
WT system we describe in this section utilizes results from 
robust control theory (Blanke, et al, 2003). Suppose y denotes 
the primary residual vector generated through the parity 
equations described above, f denotes the fault vector, d 
denotes the disturbance vector and z denotes a signal 
constructed to have the characteristics of the desired residual 
through a choice of a transfer function Tzf (s). The following 
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interconnection depicts the formulation of the robust residual 
generation scheme. 
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Fig. 4. Frame work for robust residual generation (Blanke, et. 
al, 2003). 

The main goal is to design a filter F(s) that, when applied on 
the primary residual vector, will replicate the characteristics 
specified on the fault vector through Tzf(s) as close as 
possible, while at the same time rejecting the influence of the 
disturbances. Note that Tzd(s)=0 is already selected in this 
formulation. This goal can be cast into a standard H (or H2) 

optimization problem as shown in Fig. 4.  

4.1 Pitch Subsystems 

For each blade’s pitch control system, the four possible faults 
(2 sensor faults and two system/parametric faults) can be 
addressed simultaneously. To this end, introduce the 
following notations. 

1 2 1 2 n

TT
m my r r f                

 (15) 

Starting from the primary residual generator (parity equation 
(8)) and considering linearization of the transfer T(s) (1) with 
respect to parametric faults in  and n , the fault to residual 
transfer function matrix Tyf (s) can be shown to be given by: 
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Here, r  is a nominal reference pitch angle. Model 

uncertainty and neglected terms from the linearization 
(perturbations of the original pitch actuator transfer function 
T(s)) as well as sensor noise components can be modelled 
(perhaps conservatively) through the following high pass 
form for the disturbance to residual transfer matrix:  
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Considering that a low pass filter is desirable for suppressing 
noise, and that the filter should be causal (relative degree>0), 
the specification Tzf(s) can be chosen as follows: 

3 4
31 4

3 41 3 4
3 4
31 4

3 41 3 4

0
( ) ( )

( )

0
( ) ( )

zf
s s s

T s

s s s

 
  

 
  

 
 

  
  
 
 

    

 (18) 

The constants 1, 3, and 4 can be selected to meet detection 
time specifications for the various sensor and dynamic faults.  

For the specific wind turbine pitch system model considered 
here, the transfer function matrix Tyf (s) contains transmission 
zeros at zero. To suppress their effects, an integral action is 
included in the filter by augmenting (multiplying) the transfer 
functions in (16) and (17) (or the system matrix in the 
standard form) with integrators. This approach requires a 
bilinear transformation to move the -j axis poles so 
introduced before H methods could be applied. Once the 

filter is solved for in the transformed complex domain, the 
inverse bilinear transformation is applied to obtain the filter 
in the original complex domain. Finally, the integrator is 
appended to the filter before connecting it in the original 
diagnostic scheme for the pitch system. The designed filter 
should address the coupling between the sensor faults 
introduced due to the feedback of sensor outputs in the pitch 
control system. Users can adjust this decoupling in the 
frequency range of interest by defining the matrix transfer 
function Tzf(s) accordingly or appending frequency dependent 
performance weights (Skogestad and Postlethwaite, 2005).  

The filtered residuals obtained with the above procedure were 
then analyzed and suitable thresholds were selected to 
categorize the fault signatures as 0 (no fault detected) and 1 
(fault detected). The following table summarizes the 
detection and isolation scenario for each blade pitch system. 

Table.1 Fault Signatures for Pitch Subsystem (per blade) 

 
 Residuals 

Faults r1 r2 

Sensor Faults 
m1 1 0 

m2 0 1 

System Faults n, 1 1 

4.2 Drivetrain Subsystem 

For the drivetrain subsystem, the robust residual filtering 
scheme is developed by paying special attention to the 
nonlinear functional relationships between the rotor torque 
and rotor speed. Selecting a pairing between the first rotor 
speed sensor and the first generator speed sensor, the 
corresponding residual and fault vectors are given by: 
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r gy r r f             

 (18) 

The last element of the fault vector represents the system 
faults due to a drop in the efficiency . The fault to residual 
transfer function is given by:  
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Here, ( )
r r

T s and ( )
g r

T s  are the nominal system transfer 

functions from the original drivetrain model (4).  is a 
torque-speed gradient function from the local linearization of 
the nonlinear rotor torque-speed relationship (3). 
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The variation of the torque/power coefficient with changing 
operating points of the wind turbine can be considered to lead 
to a modelling uncertainty in the computation of . To this 
end, numerical (dynamic) system identification experiments 
were conducted using MATLAB’s System Identification 
Toolbox (ident) to determine the range of the variation in . 
It was found that a low pass transfer function with a large 
break frequency  and an uncertain gain K is found to cover 
the variation in  for a range of operating points of the wind 
turbine. This allows us to describe the resulting transfer 
matrix as an uncertain LTI object with explicit bounds on the 
uncertainty.  

5( ) / ( ), [ 1.5, 7] 10s K s K        (20) 

The sign of K changes at high rotor speeds consistent with 
the negative gradient of the power coefficient (see, for e.g., 
Johnson et al 2006). 
Recall that the rotor torque used in the residual generation 
model results in a coupling between the fault in the generator 
speed sensor and the residual for the rotor speed. Since a 
separate scheme is outlined for detecting faults in the 
generator speed from available generator torque and power 
measurements, we focus on using the structure Tyf(s) above 
for detecting faults in the rotor speed sensor (and the system 
faults due to a drop in the efficiency) while decoupling it 
from the fault in the generator speed sensor. This is the 
consideration in the specification of Tzf(s) as given below. 
The transfer functions from the system fault () to the 
residuals are obtained by considering the perturbation of the 
original state space drivetrain model with respect to the 
efficiency , at various nominal operating points 
corresponding to the nominal inputs r  and g . After some 

matrix perturbation computations, one arrives at the 
following (Bernstein, 2005): 

1 1
( )

( ) ( )
( )

r

g

r

g

T s A
C sI A sI A B

T s
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 




    
         

 (21) 

It then remains to define a specification of the desired 
characteristics of the filtered residual through Tzf(s). The 
following form was selected with the goal of arriving at a low 
pass causal filter. Returning to the standard form in Fig. 4, it 
is recognized that the presented model for the drive train 
contains uncertain descriptions arising from the wind turbine 
power/torque coefficient variations. These are included as 
uncertain LTI objects in the fault to residual transfer matrix 
Tyf(s). After some manipulations, it is possible to extract the 
uncertainty and put the system in the standard linear 
fractional transformation (LFT) form. However, current -
synthesis tools in MATLAB allow one to solve for the 
desired filter F(s) directly from the description in Fig. 4 with 
the transfer functions defined in (19)-(22).  
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  (22) 

In this work, the DK iteration method of -synthesis was 
used to arrive at the filter. The designed filter when applied 

on or together with the primary residual generators described 
in Section 3, achieves the fault signatures listed in the Table 
2. Note that it is possible to distinguish between any pair of 
faults using residuals based on 2 sensor-pairs (rotor speed, 
generator speed). Note that the above approach addresses the 
sensor faults whether they are of fixed-value or are of gain 
type sensor faults. 

Table 2. Fault signatures for the drivetrain subsystem 

 

 

Faults 

Residuals 

Filtered 
residuals 

Raw 
residuals 

From power/torque 
sensors 

rr1f rr2f rg1 rg2 rgP1 rgP2 rg 

r,m1 (fixed) 1 0 1 0 0 0 0 

r,m2 (fixed) 0 1 0 1 0 0 0 

r,m1 (gain) 1 0 0 0 0 0 0 

r,m2 (gain) 0 1 0 0 0 0 0 

g,m1 (fixed or 
gain) 

0 0 0 0 1 0 0 

g,m2 (fixed or 
gain) 

0 0 0 0 0 1 0 

g(bias) 0 0 0 0 0 0 1 

 0 0 1 1 0 0 0 

5. RESULTS 

In this section we give some examples of results from 
applying the above robust fault diagnosis approach for 
detecting and isolating the faults for the wind turbine as 
defined in the Benchmark Problem (Odgaard et. al, 2009b). 
The reader is referred to this paper for details of the HAWT 
model parameters and the discussion of the fault categories. 

5.1. Pitch Subsystems 

The first of blade pitch subsystem faults is a fixed value of 5o 
in sensor 1 of blade pitch subsystem 1 injected at T=2000s. 
As shown in Fig. 5, the fault causes the first residual to cross 
the threshold while the second residual remains within the 
threshold bounds. The fault detection and isolation time for 
this fault is ~0.07s. The effect of the fault on the second 
residual is not completely decoupled. Therefore, there is a 
value of the fault (about 12o) above which both residuals will 
cross the thresholds and the fault will not be isolated. 
Figure 5 also shows the first residual for blade pitch 
subsystem 2 where an abrupt system or parametric fault is 
injected at T=2900s. The fault is unobservable until the 

reference input r  deviates from zero at T=2950.32s. The 

fault is then detected and isolated at TD=2952.20s. Further 
tuning of this diagnosis is possible via the specification of 
Tzf(s) as given in equation (18). 

In the low right corner of Fig. 5, the first residual for the third 
pitch subsystem is shown. Two faults are injected here, the 
first at T=2600s is a fixed value sensor fault of 10○, while the 
second is a slow parametric fault starting at T=3400s. The 
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diagnostic scheme is able to detect and isolate the faults in 
0.03s and 14.53s, respectively.  
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Fig. 5. Residual for sensors 

1
r and 

2
r  of pitch subsystem 1 

and sensor 1 (
1

r ) of pitch subsystems 2 and 3. 
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Fig. 6. Output residual 2g Pr , filtered residual output 
1r f

r , 

unfiltered residual output rg1 and rg2. 

5.2. Drivetrain Subsystem 

The first fault considered in the drivetrain subsystem is a gain 
fault in the second generator speed sensor at T=1000s (Fig. 
8). The detection and isolation of the fault takes 0.01s. The 
second fault in the drivetrain system is a rotor speed sensor 
fault corresponding to a fixed value of 1.4 rad/s injected at 
T=1500s. The fault is detected in 0.05s as shown in Fig. 6 by 

the residual 
1r f

r crossing the threshold. Isolation is achieved 

in 16.5s when the residual 
1g

r crosses the threshold. The last 

fault considered is a system/parametric fault at T=4000s. The 
fault causes both residual rg1 and rg2 to react. Detection and 
isolation is achieved in ~116s. Notice that the effect of this 

fault is suppressed in 
1r f

r by the robust -synthesis filter. 

 

6. CONCLUSIONS 

The paper detailed the use of H and -synthesis robust 

control theory tools for the detection and isolation of sensor, 
actuator and system/parametric faults in a horizontal axis 
wind turbine. The proposed diagnostic scheme comprises of 
two parts: a primary residual generation with the parity 
equation approach followed by secondary residual 
generation/filtering based on an H optimization framework.  

The diagnostic scheme described herein allows for successful 
detection and identification all nine faults defined in the 
Wind Turbine FDI Benchmark Problem (Ostergaard, 2009b). 
The proposed approach also gives the user a means to further 
tune the performance of the diagnostic schemes (e.g. for 
detection times or decoupling) by taking advantage of the 
optimization framework and the filtering specifications in the 
fault to (desired) residual transfer functions. 
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